Flexural Properties of Concrete Pavement with Fly Ash Replacement of 40% Incorporating Limestone Powder

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recyclability of Concrete Pavement Incorporating High Volume of Fly Ash

Recyclable concrete pavement was made from fly ash and crushed limestone sand and gravel as aggregates so that the concrete pavement could be recycled to raw materials for cement production. With the aim to use as much fly ash as possible for the sustainable development of society, while achieving adequate strength development, pavement concrete having a cement-replacement ratio of 40% by mass ...

متن کامل

Influence of High Temperatures on Flexural Strength of Foamed Concrete Containing Fly Ash and Polypropylene Fiber

In this study, the elevated temperature flexural strengths of lightweight foamed concrete (LFC) containing fly ash (FA) and polypropylene fiber (PF) was investigated experimentally and statistically. The variables included were the temperature degrees (in a range of 20 to 600°C), LFC densities of 600, 800, 1000, 1200 and 1400 kg/m3 and additive content. Two mixes were made by replacing 15% and ...

متن کامل

Evaluation of Coal Waste Ash and Rice Husk Ash on Properties of Pervious Concrete Pavement

The use of pervious concrete has been significantly considered in recent years. This consideration is due to the properties of pervious concrete in relating to the environmental sustainability that is utilized in the effective management of the runoff from rainfall. Coal extraction and rice husk obtained from milling, produces wastes that have no application and followed by environmental pollut...

متن کامل

Durability Performance of Self Compacting Concrete Incorporating Alccofine and Fly Ash

The cost associated with the application of large volume of cement and synthetic admixtures was one of the major drawbacks of Self Compacting Concrete (SCC), which can be reduced by the use of supplementary cementitious materials (SCM). When the demand of cement reduces, the release of carbon dioxide (CO2) from cement industries will come down, which has a positive impact on global w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of the Society of Materials Science, Japan

سال: 2014

ISSN: 0514-5163,1880-7488

DOI: 10.2472/jsms.63.710